

Installation and Troubleshooting Guide

All rights reserved. Reproduction or use of content, in any manner, without express written permission by CDI Electronics. Inc., is prohibited.

CDI P/N: 113-6212

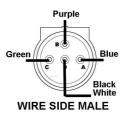
This unit replaces the following P/N's: 584636, 584637, 585114, 586212 and 586661.

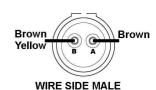
WARNING! This product is designed to be installed by a professional marine mechanic. CDI Electronics cannot be held liable for injury or damage resulting from improper installation, abuse, neglect or misuse of this product.

Installation

- 1. Disconnect the negative battery cable.
- 2. Remove power pack mounting bolts and disconnect all of the wires going to the old power pack.
- 3. Check for DC voltage on the kill (stop) wire (usually Black/Yellow) with the key-switch in the on and off position. At no time should you see over 2 volts DC on this wire as severe damage to the power pack can occur.
- 4. Connect the wires to the new power pack. Use a small amount of dielectric silicone grease in the bullet connectors.
- 5. Position the stator wire connectors in the lower slot provided in the electrical bracket.
- 6. Position the timer base wire connectors in the slot above the stator wire connectors in the electrical bracket.
- 7. Mount the new power pack using the original bolts.
- 8. Connect the orange wires to the ignition coils (remember that the blue striped wires go up and the green striped wires go down).
- 9. Reconnect the battery cable.


Troubleshooting


Service Note: Please use the Factory recommended spark plug (currently Champion QL77JC4) gapped at 0.030".


Note: These engines usually have a 35 Amp battery charging capacity. Due to the size and weight of the flywheel magnets, it is highly recommended that you check to make sure both the triggering and charge magnets are still secure in the flywheel before you service the engine. A loose or broken magnet can be deadly. It is a recommended you index the flywheel and check the timing on all cylinders when servicing these engines. Also check for static firing and intermittent spark.

ENGINE WILL NOT START OR MISFIRES:

1. Verify the wiring in the connectors as follows:

NO SPARK ON ANY CYLINDER:

- 1. Disconnect the black/yellow kill wires AT THE PACK and retest. If the engine's ignition now has fire, the kill circuit has a fault-possibly the key switch, harness or shift switch.
- 2. Disconnect the yellow wires from the stator to the rectifier and retest. If the engine fires, replace the rectifier.
- 3. Check the stator and trigger resistance and DVA output as given below for each bank:

Wire Color	Check to Wire Color	Resistance	DVA Reading	
Brown wire	Brown/Yellow wire	850-1100	150V + Connected, 170V + Disconnected	
Orange	Orange/Black	93-103	10-24V Connected, Over 45 V Disconnected	
White wire	Purple wire	(a)	0.6V or more Connected	
White wire	Blue wire	(a)	0.6V or more Connected	
White wire	Green wire	(a)	0.6V or more Connected	
White wire	Purple wire 2 nd connector	(a)	0.6V or more Connected	
White wire	Blue wire 2 nd connector	(a)	0.6V or more Connected	
White wire	Green wire 2 nd connector	(a)	0.6V or more Connected	
White wire	Black/White wire 2 nd connector	215-225	5 V + Connected @ cranking, 6-14V Running	
			with engine temp below 90 degrees.	

(a) Use a comparison reading as different brands of meters will give different readings. The typical range is 1M to 5M ohms. As long as you have approximately the same ohm reading on all six tests and the correct output with the DVA meter, the Timer-Base should be good. The exception would be if one of the scr's inside the Timer-Base is breaking down while the engine is running. This can be found indexing the flywheel and checking the timing on all cylinders. If the readings are off, reverse the meter leads and retest to see if the readings are corrected.

- 4. Check the center hub triggering magnet in the flywheel. A loose or broken magnet can cause this problem.
- 5. Check the cranking RPM. A cranking speed of less than 250-RPM will not allow the system to fire properly. This can be caused by a weak battery, dragging starter, bad battery cables or a mechanical problem inside the engine.

CDI Electronics • 353 James Record Road SW • Huntsville, AL 35824

Tech support: 1-866-423-4832 • Web support: cdielectronics.com • Sales Support: 1-800-467-3371

All rights reserved. Reproduction or use of content, in any manner, without express written permission by CDI Electronics, Inc., is prohibited.

Installation and Troubleshooting Guide

All rights reserved. Reproduction or use of content, in any manner, without express written permission by CDI Electronics. Inc., is prohibited.

NO SPARK ON ONE CYLINDER:

NOTE: These engines use a gear reduction starter which results in a lower cranking RPM than usual. If you have one or more cylinders intermittent at cranking: Try starting the engine and checking to see if ALL of the cylinders now fire correctly. If so, the engine's ignition should be good. Make sure the battery is sized correctly as the cranking capacity can affect the cranking speed.

- 1. Check the timer base's resistance and output (see NO SPARK ON ANY CYLINDER above).
- 2. Check the DVA output on the orange wires from the power pack while connected to the ignition coils. You should have a reading of at least 130V or more. If the reading is low on one cylinder, disconnect the orange wire from the ignition coil for that cylinder and reconnect it to a load resistor. Retest. If the reading is now good, the ignition coil is likely bad. A continued low reading indicates a bad power pack or Timer-Base.
- 3. Check the power pack resistance given below:

⁽a) Use a comparison reading as different brands of meters will give different readings. The typical range is 90 to 200 ohms for the Orange wires. You should have approximately the same ohm reading on all six tests with the Orange wires. If one of the SCR's inside the power pack is shorted or open, the readings will be quite a bit different.

4. Check the spark plug wires for breaks and abrasions.

NO SPARK ON ONE BANK:

- 1. Disconnect the black/yellow kill wires AT THE PACK and retest. If the engine's ignition now has fire, the kill circuit has a fault-possibly the key switch, harness or shift switch.
- 2. Swap the Brown stator connecters from side to side (do not remove the wires from the connectors). If the problem moves, replace the stator
- 3. Check the stator and trigger resistance and DVA output as given below for each bank:

Wire Color	Check to Wire Color	Resistance	DVA Reading	
Brown wire	Brown/Yellow wire	850-1100	150V or more Connected	
Orange	Orange/Black	93-103 OEM	10-24V Connected	
White wire	Purple wire	(a)	0.6V or more Connected	
White wire	Blue wire	(a)	0.6V or more Connected	
White wire	Green wire	(a)	0.6V or more Connected	
White wire	Purple wire 2 nd connector	(a)	0.6V or more Connected	
White wire	Blue wire 2 nd connector	(a)	0.6V or more Connected	
White wire	Green wire 2 nd connector	(a)	0.6V or more Connected	
White wire	Black/White wire 2 nd connector	215-225	5 V + Connected @ cranking, 6-12V Running	
			With engine temp below 90 degrees.	

- (a) Use a comparison reading as different brands of meters will give different readings. The typical range is 1M to 5M ohms. As long as you have approximately the same ohm reading on all six tests and the correct output with the DVA meter, the Timer-Base should be good. The exception would be if one of the scr's inside the Timer-Base is breaking down while the engine is running. This can be found indexing the flywheel and checking the timing on all cylinders. If the readings are off, reverse the meter leads and retest to see if the readings are corrected.
- 4. Check the DVA output on the orange wires from the power pack while connected to the ignition coils. You should have a reading of at least 150V or more. If the reading is low on one bank, disconnect the orange wires from the ignition coil for that bank and reconnect them to a load resistor. Retest. If the reading is now good, one or all of the ignition coils are likely bad. A continued low reading indicates a bad power pack.

ENGINE WILL NOT ACCELERATE BEYOND 2500 RPM (Runs smooth below that RPM):

- 1. Use a temperature probe and verify that the engine is not overheating. Then, disconnect the tan temperature wire from the pack and retest. If the engine now performs properly, test and replace the defective temperature switch.
- 2. Make sure the tan temperature switch wire is not located next to a spark plug wire.
- 3. Disconnect the VRO sensor from the engine harness and retest. If the engine performs correctly, replace the VRO or sensor.

CDI Electronics • 353 James Record Road SW • Huntsville, AL 35824

Tech support: 1-866-423-4832 • Web support: cdielectronics.com • Sales Support: 1-800-467-3371

All rights reserved. Reproduction or use of content, in any manner, without express written permission by CDI Electronics, Inc., is prohibited.

Installation and Troubleshooting Guide

Il rights reserved. Reproduction or use of content, in any manner, without express written permission by CDI Electronics. Inc., is prohibited.

ENGINE DIES WHEN QUICKSTART DROPS OUT:

Check ignition timing at idle with the White/Black temperature wire disconnected. Remember to allow for the drop in ignition timing when Quick Start disengages. Verify ignition timing after engine has warmed up, according to the service manual.

ENGINE WILL NOT STAY IN QUICKSTART OVER 10 SECONDS:

- Verify the engine temperature is below the trip point (89 degrees on some engines and 104 degrees on others) of the temperature switch.
- 2. Disconnect the White/Black Temperature Switch wire from the Port Temperature Switch. If the engine now stays in QuickStart, the Temperature Switch is likely defective.

ENGINE STAYS IN QUICKSTART ON ALL CYLINDERS:

- 1. With the engine idling, check the Yellow/Red wire for DC voltage. If there is DC voltage on this wire while the engine is running, the Quick-Start will not disengage. A voltage of less than 7 volts will not engage the starter solenoid, yet will engage Quick-Start.
- Short the White/Black Temperature Switch wire FROM the power pack to engine ground. Start the engine, if the Quick Start drops out after approximately 5 seconds, replace the White/Black Temperature Switch.
- 3. Disconnect the Black/White wire from the power pack. If the Quick-Start feature is not now working, replace the power pack.

ENGINE DROPS OUT AND BACK IN QUICKSTART AT IDLE:

- 1. With the engine idling, check the Yellow/Red wire for DC voltage. Intermittent DC voltage on this wire while the engine is running will re-engage Quick-Start. A voltage of less than 7 volts will not engage the starter solenoid, yet will engage Quick-Start.
- With the engine idling, disconnect the Black/White wire from the power pack and short the White/Black Temperature Switch wire FROM the power pack to engine ground. If the Quick Start drops out and stays out after approximately 5 seconds, replace the White/Black Temperature Switch. If the problem is still present, replace the power pack.

ENGINE WILL NOT ENGAGE QUICKSTART:

- 1. Disconnect the White/Black wire from the temperature sensor.
- 2. With the engine idling, check the Black/White timer base wire for DC voltage. There should be about 6 to 10 volts DC voltage on this wire while the engine is running for the Quick-Start to engage.
- 3. Short the White/Black Temperature Switch wire FROM the power pack to engine ground. If the voltage on the Black/White wire drops out after approximately 5 seconds but the engine timing does not change, replace the timer base. If the voltage remains present, disconnect the Yellow/Red wire to the pack and repeat the test. If the voltage still remains, replace the pack.

ENGINE DROPS OUT AND BACK IN QUICKSTART AT IDLE:

- 1. With the engine idling, check the Yellow/Red wire for DC voltage. Intermittent DC voltage on this wire while the engine is running will re-engage Quick-Start. A voltage of less than 7 volts will not engage the starter solenoid, yet will engage Quick-Start.
- 2. With the engine idling, disconnect the Black/White wire from the power pack and short the White/Black Temperature Switch wire FROM the power pack to engine ground. If the Quick Start drops out and stays out after approximately 5 seconds, replace the White/Black Temperature Switch. If the problem is still present, replace the power pack.

ENGINE ENGAGES S.L.O.W. (Limits at 2500 PM) WHEN THE NO OIL, LOW OIL OR FUEL VACUUM ALARM SOUNDS:

- 1. Disconnect engine harness.
- 2. Disconnect the Tan wires from the temperature sensors in both cylinder heads.
- 3. Using an VOM Meter, check the diode in the engine harness as follows:

Red Meter Lead	Black Meter Lead	Reading
Tan pin in Engine Harness Connector	Tan Lead From Port Cyl Head	0.500 (approximately)
Tan pin in Engine Harness Connector	Tan Lead From Stbd Cyl Head	0.500 (approximately)
Tan Lead From Stbd Cyl Head	Tan pin in Engine Harness Connector	OL or over 1.0
Tan Lead From Port Cyl Head	Tan pin in Engine Harness Connector	OL or over 1.0

NOTE: You can replace the diode in the harness with a 1N4007 diode available at most electronics stores.

CDI Electronics • 353 James Record Road SW • Huntsville, AL 35824

Tech support: 1-866-423-4832 • Web support: cdielectronics.com • Sales Support: 1-800-467-3371

All rights reserved. Reproduction or use of content, in any manner, without express written permission by CDI Electronics, Inc., is prohibited.